The Ramsey Numbers for Disjoint Union of Stars

ثبت نشده
چکیده

The Ramsey number for a graph G versus a graph H, denoted by R(G,H), is the smallest positive integer n such that for any graph F of order n, either F contains G as a subgraph or F contains H as a subgraph. In this paper, we investigate the Ramsey numbers for union of stars versus small cycle and small wheel. We show that if ni ≥ 3 for i = 1, 2, . . . , k and ni ≥ ni+1 ≥ √ ni − 2, then R( ∪k i=1 S1+ni , C4) = ∑k i=1 ni + k+1 for k ≥ 2. Furthermore, we show that if ni is odd and 2ni+1 ≥ ni for every i, then R( ∪k i=1 Sni ,W4) = R(Snk ,W4) + ∑k−1 i=1 ni for k ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Local Ramsey numbers for linear forests

Let L be a disjoint union of nontrivial paths. Such a graph we call a linear forest. We study the relation between the 2-local Ramsey number R2-loc(L) and the Ramsey number R(L), where L is a linear forest. L will be called an (n, j)-linear forest if L has n vertices and j maximal paths having an odd number of vertices. If L is an (n, j)-linear forest, then R2-loc(L) = (3n − j)/2 + dj/2e −

متن کامل

A generalization of Ramsey theory for linear forests

Chung and Liu defined the d-chromatic Ramsey numbers as a generalization of Ramsey numbers by replacing a weaker condition. Let 1 < d < c and let t = (c d ) . Assume A1, A2, . . . , At are all d-subsets of a set containing c distinct colors. Let G1, G2, . . . , Gt be graphs. The d-chromatic Ramsey number denoted by rc d(G1, G2, . . . , Gt) is defined as the least number p such that, if the edge...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

Acyclic and Star Colorings of Joins of Graphs and an Algorithm for Cographs (Extended Abstract)

compiled April 30, 2009 from draft version hg:e0660c153c0b:79 An acyclic coloring of a graph is a proper vertex coloring such that the subgraph induced by the union of any two color classes is a disjoint collection of trees. The more restricted notion of star coloring requires that the union of any two color classes induces a disjoint collection of stars. The acyclic and star chromatic numbers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010